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Lifetime of metastable states in resonant tunneling structures

O. A. Tretiakov, T. Gramespacher,* and K. A. Matveev
Department of Physics, Duke University, Durham, NC 27708-0305

~Received 2 December 2002; published 14 February 2003!

We investigate the transport of electrons through a double-barrier resonant-tunneling structure in the regime
where the current-voltage characteristics exhibit bistability. In this regime one of the states is metastable, and
the system eventually switches from it to the stable state. We show that the mean switching timet grows
exponentially as the voltageV across the device is tuned from the boundary valueVth into the bistable region.
In samples of small area we find lnt }uV2Vthu3/2, while in larger samples lnt }uV2Vthu.
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The problem of the decay of a metastable state has b
addressed in a variety of areas including first-order ph
transitions,1 Josephson junctions,2 field theory,3 magnetism,4

and chemical kinetics.5 Meanwhile, progress in nanofabrica
tion technology has made possible observation of intrin
bistabilities in double-barrier resonant-tunneling structu
~DBRTS! ~Ref. 6! and superlattices.7 Recent experiments8,9

with such devices have demonstrated that near the boun
of the bistable region one of the two states is metastable,
its lifetime has been studied by measuring current as a fu
tion of time at different voltages. Thus, these devices prov
an ideal experimental system for studying the decay of m
stable states in real time. In this Brief Report we develop
theory of switching times in double barrier structures, F
1~a!. We expect the results to be relevant for other device
which sequential resonant tunneling plays a key role in
scribing the electronic transport, such as weakly coupled
perlattices.

We concentrate on the case of intrinsic bistability, whi
can be observed by measuring currentI as a function of
voltageV applied to the device while the impedance of t
external circuit equals zero. As shown in Ref. 6, for a cert
range of biasV, two states of currentI are possible at the
same value of the voltage, and theI -V curve has character
istic hysteretic behavior. As one increases bias, the up
branch ends at some boundary voltageVth , shown schemati-
cally in Fig. 1~b!. If the voltageV is fixed just below the
thresholdVth , the system stays in the upper state for a fin
time t, before decaying to the stable lower state.

We will show that the lifetime of the metastable statet
can be understood by analogy to the problem of a Brown
particle in a double-well potential~Fig. 2!. Here the coordi-
nate of the Brownian particle has the meaning of the curr
I in the device~or the electron densityn). In the problem of
the Brownian particle,t depends exponentially on the heig
of the potential barrierUb separating the local and globa
minima, i.e.,t}exp(Ub /T* ), whereT* is the temperature
Unlike a Brownian particle, a DBRTS at nonzero bias is
nonequilibrium system in which fluctuation phenomena
driven by shot noise in the current rather than the elect
temperatureT. On the boundary of the bistable region, t
local minimum disappears, and thereforeUb goes to zero.
Thus, it is clear thatt will depend exponentially on the volt
age measured from the boundaryVth of the bistable region.

Here we investigate effects of shot noise in DBRTS us
the framework of the theoretical model introduced in R
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10. The DBRTS is formed as a layered semiconductor h
erostructure. The electrostatic potential across the devic
shown in Fig. 1~a!. The potential is assumed to be indepe
dent of thex andy coordinates. The model includes only on
subband in the quantum well. We furthermore assume tha
zero bias the bottom of this subbandE0 is above the Fermi
energyEF in the left and right leads. If the area of the samp
S is small, we can assume that the charge in the wel
distributed uniformly. Then, the state of the device is co
pletely described by the electron densityn in the quantum
well. Below we will also discuss effects of nonuniform
charge distribution in the well, which are important in th
case of devices of large area.

In the sequential tunneling approximation, the transpor
the device is described by the following master equation
the time-dependent distribution functionP(n,t) of the elec-
tron densityn in the well,

]P~n,t !

]t
5PS n2

1

S
,t D(

qk
WkqS n2

1

SD f k~12 f q!

1PS n1
1

S
,t D(

qp
WqpS n1

1

SD f q

2P~n,t !(
qk

Wkq~n! f k~12 f q!

2P~n,t !(
qp

Wqp~n! f q . ~1!

FIG. 1. ~a! The potential profile of the DBRTS at applied biasV.
~b! The I -V curve of the device has a bistable region between
dashed lines. The dotted line shows the process of switching fro
metastable state to the stable one.
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Here f k , f p , andf q are the Fermi occupation numbers in t
left lead, right lead, and the quantum well, respective
Wkq(n) andWqp(n) are the tunneling rates through the le
and right barriers. The first two terms of Eq.~1! account for
the processes which bring the system to the state of elec
densityn, and the last two terms describe the processes
take the system away from it. The first and the third terms
the right-hand side of Eq.~1! describe tunneling of one elec
tron into the well from the left lead, while the second and t
fourth ones account for the probability of an electron in t
quantum well to tunnel into the right lead. We dropped t
terms describing the tunneling from the well to the left le
and tunneling from the right lead into the well. These co
tributions are negligible because the bistability emerge10

when the level in the well is close to the bottom of t
conduction band in the left lead and far above the Fe
level in the right lead.~We assumeT!EF .)

Assuming that the total number of particles in the well
large,nS@1, we can expand Eq.~1! in the small paramete
1/S. Keeping terms up to the second order we reduce
master equation to the Fokker-Planck equation

]P~n,t !

]t
52

]

]n
@A~n!P~n,t !#1

1

2

]2

]n2
@B~n!P~n,t !#.

~2!

The exact expressions forA(n) andB(n) are rather compli-
cated, but near the threshold they can be calculated ana
cally, see Eq.~4! below. The stationary solution of Eq.~2!
can be easily obtained:

P0~n!5
const

B~n!
e2Su(n), u~n!52

2

SE0

n A~n8!

B~n8!
dn8, ~3!

whereu(n) is the effective potential.
In the derivation of the Fokker-Planck equation~2!, the

coefficientsA(n) andB(n) appeared as the first and seco
terms of the expansion in 1/S. We therefore conclude tha
A(n)/B(n)}S, andu(n) is independent ofS. Thus when the
areaS is large, the distribution functionP0(n) has very nar-
row peaks near the minima ofu(n). If we neglect the fact
that the width is finite, then the electron densityn in the well

FIG. 2. Brownian particle in a double-well potential. The life
time of the metastable statet depends exponentially on the heig
of the barrier Ub separating the local and global minim
t}exp(Ub /T* ). The coordinate of the particlex has the meaning o
the electron densityn in the well, andU(n)5Su(n), see Eq.~3!.
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can be found by minimizingu(n). The minimization condi-
tion written asA(n)50 is in agreement with the results o
Ref. 10.

Our model allows for an analytical treatment at small v
ues of the parameterl5me2/2p\2C, whereC is the capaci-
tance of the device per unit area. Then the calculations
greatly simplified, and one obtains the following expressio
for A andB near the threshold:

A~n!52
b

2
@2a1g~n2nth!2#, ~4a!

b[SB~nth!5
A2

p
l2

1

\

TL
2

TR

C

e2
EF

2 , ~4b!

a52
1

l2 S TR

TL
D 2E0

EF
2

edV, ~4c!

g52
1

l4 S TR

TL
D 4S e2

C D 2 E0
2

EF
4

. ~4d!

Here dV5Vth2V, the electron density at the thresholdnth

5(l2/2)(TL /TR)2(CEF
2/e2E0); and TL,R are the transmis-

sion coefficients of the left and right barriers at energyE0
and zero applied bias. Ifl is not small, we cannot get ex
plicit expressions fora, g andb, but the generic form of Eq
~4a! remains unchanged.

The potentialu(n) is shown schematically in Fig. 2 for a
voltage which lies slightly below the threshold voltageVth .
Close to the threshold the potential can be approximated
cubic polynomial

u~n!'2a~n2nth!1
g

3
~n2nth!31u~nth!. ~5!

The switching ratet21 is proportional to the distribution
function ~3! at the maximum of the effective potentia
Su(n). Thus,t depends exponentially on the barrier heig
and

ln
t

t0
5

4

3

Sa3/2

g1/2
}SdV3/2. ~6!

The prefactort0 can be found using the techniques d
scribed, e.g., in Ref. 11.

It is important to note that the form~5! of the potential
u(n) and the linear dependencea}dV are dictated by ana
lyticity of the potential near the threshold. Thus, the applic
bility of the following results is not limited to a particula
model of transport in DBRTS. A 3/2-power law analogous
Eq. ~6! was theoretically predicted for different physical sy
tems in Refs. 2,4,5,12. Experimentally it was observed
cently for an optically trapped Brownian particle.13

The result~6! has been obtained under the assumpt
that the electrons spread rapidly in thex-y plane, and their
densityn is uniform. In large samples, however, the sprea
ing takes a long time, and one has to account for the dep
3-2
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dence of the densityn on the pointr5(x,y) in the well. This
can be done by generalizing the Fokker-Planck equation~2!
to the case of nonuniformn(r ).

We begin by studying the in-plane diffusion of electro
in the well neglecting coupling to the leads. For simplic
we neglect the electron correlation effects; the interaction
electrons will be accounted for in the charging energy
proximation. Assuming that the electrons diffuse indep
dently, one can write a master equation for the distribut
function P$n(r ),t% as follows. During the timeDt at most
one electron can move from positionr1 to r2, that is,

P$n~r !,t1Dt%2P$n~r !,t%

5E E dr1dr2@P$n~r !1d~r2r1!2d~r2r2!,t%

3W~r1 ,r2 ,Dt !2P$n~r !,t%W~r2 ,r1 ,Dt !#. ~7!

Here W(r1 ,r2 ,Dt) is the probability density of an electro
diffusing from a pointr1 in the plane of the quantum well t
point r2 during the time intervalDt. Since electrons are fer
mions, a particle can diffuse only from a filled state atr1 to
an empty state atr2. Assuming that the diffusion is due to th
elastic scattering of electrons by defects, we find

W~r1 ,r2 ,Dt !5g~r12r2 ,Dt !nE f 1~E!@12 f 2~E!#dE,

~8!

wheren is the density of states in the well~per unit area!,
and f 1,2(E) are the occupation numbers at pointsr1 , r2. The
classical diffusion probabilityg(r ,Dt) is given by

g~r ,Dt !5
1

4pDDt
e2r2/4DDt.d~r !1DDt¹2d~r !, ~9!

whereD is the diffusion coefficient. The approximate form
obtained in the limitDt→0.

Using Eqs.~8!, ~9! and expanding the distribution func
tion from Eq. ~7! up to the second order ind(r2r1)2d(r
2r2) we obtain a functional Fokker-Planck equation

]P$n~r !,t%

]t
5nDE E dr1dr2F S d

dn~r1!
2

d

dn~r2! D
1

1

2 S d

dn~r1!
2

d

dn~r2! D
2G m12m2

12e2(m12m2)/T

3P$n~r !,t%¹2d~r12r2!. ~10!

Herem1 andm2 are the electrochemical potentials atr1 and
r2, respectively. Their values are found by adding the el
trostatic potentiale2n/C to the Fermi energyn/n,

m1,25
e2

C̃
n~r1,2!. ~11!

Here C̃ is defined bye2/C̃5e2/C11/n.
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Substituting Eq.~11! into Eq. ~10!, integrating twice by
parts and assuming thatum12m2u!T, one obtains the fol-
lowing Fokker-Planck equation:

]P$n,t%

]t
52nDE dr

d

dn Fe2

C̃
¹2n1T¹2

d

dnGP$n,t%.

~12!

The stationary solution of Eq.~12! is found easily by requir-
ing the part of the integrand after the first functional deriv
tive to vanish,

P0$n%5expF2
1

TE e2n2~r !

2C̃
dr G .

This result has a simple physical meaning. The equilibri
distribution functionP0 has the Gibbs forme2E/T, with the
energy per unit areae2n2/2C̃ in agreement with the electro
chemical potential~11!.

Using Eq. ~12! we can take into account processes
charge spreading in the quantum well. The electron den
n(r ) can change due to either tunneling of electrons throu
the barriers or their diffusion inside the well. Thus, we mu
add the terms from the right-hand side of Eq.~2! to Eq. ~12!
to account for both processes. The combined Fokker-Pla
equation takes the form

]P$n~r !,t%

]t
5E dr

d

dn F2A~n!1
S

2

d

dn
B~n!

2nD
e2

C̃
¹2nGP$n~r !,t%. ~13!

Here we neglected the second term in Eq.~12!. This can be
done as long as the temperature of the electrons in the we
much lower than the Fermi energy.15

The stationary solution of this equation is

P0$n%5
const

B~n!
e2F, F$n%5E dr @u~n!1h~¹n!2#,

~14!

whereh5s/C̃SB(n), ands5e2nD is the in-plane conduc-
tivity. Note that in the limitD→` the electron density is
uniform, ¹n50, and we recover the result~3!.

In the case when the diffusion coefficientD is finite, the
electron density varies from point to point in the quantu
well; hence, this problem is infinite dimensional. In the mu
tidimensional case, the system escapes from the local m
mum of potential through a point where the barrier sepa
ing it from the global minimum takes the lowest possib
value, i.e., through a saddle point. The mean switching ti
t is determined by the potential at the saddle point, measu
from the local minimum. This approach is similar to the o
used in the theory of kinetics of first-order phase transition1

with F playing the role of the free energy.
The saddle point of the functionalF$n% is achieved atn

5ns(r ) which almost everywhere in the sample is very clo
to the densitynmin of the system at the local minimum ofF.
3-3
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However, in a region of some characteristic sizer 0, the den-
sity ns(r ) changes in the direction of the global minimum
Fig. 2. Thus, the DBRTS of large area first switches to
stable state in a region of sizer 0, which then expands to th
whole sample.

We perform the following calculations in the regime
voltages very close to the thresholdVth , where we can use
u(n) in the form ~5!, and h takes a constant valueh
5s/C̃b. Initially the system is in the local minimum, de
scribed by a uniform densitynmin5nth1Aa/g. In order to
find the saddle point, it is convenient to parametrize the e
tron densityn(r ) in terms of a dimensionless functionz(r),
such thatn(r )5nmin22Aa/gz(r /r 0), where the length scale
r 05Ah(ag)21/4. Using this parametrization, one can fin
the saddle point ofF as a nontrivial solutionzs(r) of the
equation

2¹2z1z2z250, ~15!

with the boundary conditionzs(r)50 at r→`. It can be
obtained numerically, Fig. 3.

*Present address: Winterthur Life, P.O. Box 300, CH-8401 Win
thur, Switzerland.

1J. S. Langer, Ann. Phys.~N.Y.! 41, 108 ~1967!.
2J. Kurkijärvi, Phys. Rev. B6, 832 ~1972!.
3S. Coleman,Aspects of Symmetry~Cambridge University Press

Cambridge, 1985!, Chap. 7, and references therein.
4R. H. Victora, Phys. Rev. Lett.63, 457 ~1989!.
5M. I. Dykman, E. Mori, J. Ross, and P. M. Hunt, J. Chem. Ph

100, 5735~1994!.
6V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev. L

58, 1256~1987!.
7J. Kastrup, H. T. Grahn, K. Ploog, F. Prengel, A. Wacker, and
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The switching ratet21 is proportional to the distribution
function P0$ns%, where ns(r )5nmin22Aa/gzs(r /r 0).
Therefore, one can calculate the logarithm of the me
switching timet asF$ns%2F$nmin%,

ln
t

t2
5k

ah

g
}dV. ~16!

Here the constantk.62.01 was found numerically.14,16

According to Eq.~16!, ln(t/t2) does not depend on th
areaS. On the other hand, since the critical fluctuationns(r )
can be centered anywhere in the sample, the switching
t21 is proportional to the area of the sampleS, hencet2
}1/S. The exact calculation of the prefactort2 presents a
number of theoretical challenges, which we leave for futu
work.

In contrast to the case of small samples Eq.~6!, the loga-
rithm of the escape time~16! in large samples is linear in
dV. The crossover between the two regimes occurs when
areaS of the sample is of the order ofr 0

25h(ag)21/2. One
can see from Eq.~4c! thatr 0

2}dV21/2. Thus, one can observ
this crossover in a single sample by tuning the voltage.
deed, at relatively smalldV we will have S!r 0

2 and lnt
}dV3/2, whereas at largerdV we have lnt}dV.

In conclusion, we have studied the switching timet from
the metastable state to the stable one in DBRTS. We sho
that t is exponential in the voltage measured from t
boundary of the bistable region; it is given by Eq.~6! or ~16!
depending on the area of the sample. Our results can
tested in experiments similar to Refs. 8,9.
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